Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1022220120010010066
Clinical Nutrition Research
2012 Volume.1 No. 1 p.66 ~ p.77
Accuracy of Predictive Equations for Resting Metabolic Rates and Daily Energy Expenditures of Police Officials Doing Shift Work by Type of Work
Lee Sun-Hee

Kim Eun-Kyung
Abstract
The purpose of this study was to analyze the accuracy of predictive equations for resting metabolic rate (RMR) and daily energy expenditure in policemen on a rotating shift. Subjects were 28 healthy policemen on a rotating shift (males) age of 23-46 years. The participants' RMR was measured by using indirect calorimetry (TrueOne2400) and also calculated from various predicted equations of RMR (Harris-Benedict, Schofield(W)/(WH), FAO/WHO/UNU(W)/(W/H), Cunningham, Mifflin, Liu, Owen, IMNA and Henry(W)/(WH)). The accuracy of these equations were evaluated on basis of accurate prediction (the percentage of subjects whose RMR was predicted within 90% to 110% of the RMR measured), mean difference, root mean squared prediction error, mean % difference, limits of agreement of Bland-Altman method between predicted and measured RMR. The measured RMR value of subjects was 1748 ¡¾ 205.9 kcal. Of the predictive equations tested, the Harris-Benedict equation (mean difference: -14.8 kcal/day, RMSPE: 195.8 kcal/day, mean % difference: 0.1%) was the most accurate and precise, but accuracy in prediction of the equation were only 35.7%. The daily energy expenditure at night-duty was 3062 kcal calculated as multiplying RMR by its physical activity level. Subsequently, daily energy expenditure of day-duty was 2647 kcal and the lowest daily energy expenditure was, 2310 kcal at holiday duty. Daily energy intake of all study participants was 2351 kcal at day-duty, 1959 kcal at night-duty and 1796 kcal at holiday-duty in order. The estimated energy requirements for policemen on a rotating shift on day shift, night shift and holiday came to 2743.6 kcal/day, 2998.6 kcal/day and 2576.9 kcal/day, respectively. These results suggest that estimated energy requirements (EER) of policemen on a rotating shift should be differently proposed by a proper equation which can closely reflect their metabolic status at each time shift.
KEYWORD
Resting energy expenditure, Predictive equation, Indirect calorimetry, Policemen
FullTexts / Linksout information
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI) KoreaMed